Practice of Epidemiology Fitting General Relative Risk Models for Survival Time and Matched Case-Control Analysis
نویسندگان
چکیده
Cox proportional hazards regression analysis of survival data and conditional logistic regression analysis of matched case-control data are methods that are widely used by epidemiologists. Standard statistical software packages accommodate only log-linear model forms, which imply exponential exposure-response functions and multiplicative interactions. In this paper, the authors describe methods for fitting non-log-linear Cox and conditional logistic regression models. The authors use data from a study of lung cancer mortality among Colorado Plateau uranium miners (1950–1982) to illustrate these methods for fitting general relative risk models to matched casecontrol control data, countermatched data with weights, d:m matching, and full cohort Cox regression using the SAS statistical package (SAS Institute Inc., Cary, North Carolina).
منابع مشابه
Fitting general relative risk models for survival time and matched case-control analysis.
Cox proportional hazards regression analysis of survival data and conditional logistic regression analysis of matched case-control data are methods that are widely used by epidemiologists. Standard statistical software packages accommodate only log-linear model forms, which imply exponential exposure-response functions and multiplicative interactions. In this paper, the authors describe methods...
متن کاملSpatial Varying Coefficient Regression Model For Relative Risk Factors of Esophageal Cancer Patients
In conventional methods for spatial survival data modeling, it is often assumed that the coefficients of explanatory variables in different regions have a constant effect on survival time. Usually, the spatial correlation of data through a random effect is also included in the model. But in many practical issues, the factors affecting survival time do not have the same effects in different regi...
متن کاملComparison of Artificial Neural Networks and Cox Regression Models in Prediction of Kidney Transplant Survival
Cox regression model serves as a statistical method for analyzing the survival data, which requires some options such as hazard proportionality. In recent decades, artificial neural network model has been increasingly applied to predict survival data. This research was conducted to compare Cox regression and artificial neural network models in prediction of kidney transplant survival. The prese...
متن کاملComparison of Artificial Neural Networks and Cox Regression Models in Prediction of Kidney Transplant Survival
Cox regression model serves as a statistical method for analyzing the survival data, which requires some options such as hazard proportionality. In recent decades, artificial neural network model has been increasingly applied to predict survival data. This research was conducted to compare Cox regression and artificial neural network models in prediction of kidney transplant survival. The prese...
متن کاملEffective Factors in the Survival Time of Covid-19 Patients in Three Epidemic Waves: A Prospective Cohort Study
Background and Objectives: This study aimed to investigate the effective factors in the survival/hazard time of Covid-19 patients in three waves of epidemic. Methods: All 880 Covid-19 patients were included in this prospective cohort study using the census method. Polymerase chain reaction was used to diagnose Covid-19. The survival status of these patients was followed up for 4 months. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010